ABOUT ME

-

Today
-
Yesterday
-
Total
-
  • tov 방정식
    카테고리 없음 2024. 1. 16. 14:29

    program tov
    
    integer i,j,k !================반복문 변수이다
    
    real c,b,d
    real dens, h
    
    real a(513) ,g(513) !======================== a는 lamda b는 nu 이다
    
    dens=0.00128
    
    h=1/513.0
    
    
    do i=1,513,1
    
    a(i)=0.0
    g(i)=0.0
    
    end do
    !======================================= 수치해법의 초기조건
    
    
    do j=1,10000,1
    
    do i=2,255,1
    c=a(i)
    b=a(i+1)
    d=a(i-1)
    
    !======================= 수치해석 메인코드
    
      a(i)= c+(a(i+1)-2*a(i)+a(i-1)+2*(b-d)/(i)+((b-d)*(b-d))*0.5&
     +h*h*4*3.14*exp(2*c)*64*((1-i*h)**(-4))*(dens*(1-4*i*i*h*h)&
     +99*dens**2*(1-4*i*i*h*h)**2))/(2.0-h*h*4*3.14*exp(2*c)*64*((1-&
     i*h)**(-4))*(dens*(1-4*i*i*h*h)+99*dens**2*(1-4*i*i*h*h)**2))
    
    !============================수치해석 메인코드
    end do
    
    do k=256,512,1
    c=a(k)
    b=a(k+1)
    d=a(k-1)
    
    a(k)=a(k)+( a(k+1)-2*a(k)+a(k-1)+2*(b-d)/(k)+(b-d)*(b-d)/2.0)/2.0
    
    
    end do
    
    a(513)=0
    
    a(1)=a(1)+2/3*(-3/2*a(1)+2*a(2)-1/2*a(2))
    
    
    end do
    
    
    
    
    !====================================== 여기서부터는 nu factor 계산하기
    
    do j=1,10000,1
    
    do i=2,255,1
    c=g(i)
    b=g(i+1)
    d=g(i-1)
    
    g(i)=g(i)+(g(i+1)-2*g(i)+g(i-1)+2*(b-d)/i+(b&
    -d)**2+(b-d)*(a(i+1)&
    -a(i-1))-h*h*4*3.14*64*(1-&
    i*h)**(-4)*exp(c)*(dens*(1-4*i*i*h*h)+202*(dens*dens)*(1&
    -4*i*i*h*h)))/(2&
    +h*h*4*3.14*64*(1&
    -i*h)**(4)*exp(c)*(dens*(1&
    -4*i*i*h*h)+202*(dens*dens)*(1-4*i*i*h*h)))
    
    end do
    
    
    do i=256,512,1
    
    g(i)=g(i)+(g(i+1)-g(i+1)-2*g(i)+g(i-1)+2*(b-d)/i+(b-d)**2+(b-d)*(a(i+1)&
    -a(i-1)))/2.0
    
    end do
    
    g(513)=0
    
    g(1)=a(1)+2/3*(-3/2*g(1)+2*g(2)-1/2*g(2))
    
    
    end do
    
    
    
    
    
    
    open(unit=1,file='oppenheimer.txt',status='replace')
     
    
    
    
    
    
    
    do i=1,513,1
    write(1,*) h*i ,g(i)
    
    
    end do
    
    
    
    close(1)
    
    
    
    
    end program tov

Designed by Tistory.